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SUMMARY

Boussinesq models describe the phase-resolved hydrodynamics of unbroken waves and wave-induced
currents in shallow coastal waters. Many enhanced versions of the Boussinesq equations are available
in the literature, aiming to improve the representation of linear dispersion and non-linearity. This paper
describes the numerical solution of the extended Boussinesq equations derived by Madsen and Sørensen
(Coastal Eng. 1992; 15:371–388) on Cartesian cut-cell grids, the aim being to model non-linear wave
interaction with coastal structures. An explicit second-order MUSCL-Hancock Godunov-type finite volume
scheme is used to solve the non-linear and weakly dispersive Boussinesq-type equations. Interface fluxes
are evaluated using an HLLC approximate Riemann solver. A ghost-cell immersed boundary method is
used to update flow information in the smallest cut cells and overcome the time step restriction that would
otherwise apply. The model is validated for solitary wave reflection from a vertical wall, diffraction of a
solitary wave by a truncated barrier, and solitary wave scattering and diffraction from a vertical circular
cylinder. In all cases, the model gives satisfactory predictions in comparison with the published analytical
solutions and experimental measurements. Copyright q 2007 John Wiley & Sons, Ltd.

Received 25 June 2007; Revised 13 September 2007; Accepted 2 October 2007

KEY WORDS: Boussinesq equations; finite volume method; Cartesian cut cell; Godunov method; non-
linear waves; coastal structures

∗Correspondence to: Jun Zang, Department of Architecture and Civil Engineering, University of Bath, Bath BA2
7AY, U.K.

†E-mail: J.Zang@bath.co.uk

Contract/grant sponsor: U.K. Engineering and Physical Science Research Council; contract/grant numbers:
GR/T07220/01, GR/T07220/02

Copyright q 2007 John Wiley & Sons, Ltd.



1460 D. Z. NING ET AL.

1. INTRODUCTION

Many maritime structures, such as piers, jetties, and offshore wind turbine stacks, are composed
of vertical surface-piercing cylinders situated in water of intermediate to shallow depth. The
component cylinders are subject to inertia and drag loads arising from the instantaneous flow
field, which is driven by waves and currents as they interact with the structure. Engineers are
particularly interested in determining the flow field about vertical cylinders in extreme waves,
which may arise from large-scale displacements as a series of solitary-like waves or as storm-
driven wave groups. As waves approach the shore, they shoal, refract, break, and reflect. When
encountering large structures, waves scatter and diffract. Although these transformation processes
may be modelled in detail by solving the 3-D Reynolds-averaged Navier–Stokes (RANS) equations,
the computational cost is beyond the capacity of present-day computers. A practical alternative
for modelling non-breaking waves is to use the Boussinesq equations, which are essentially a
depth-averaged model, and incorporate some of the features of vertical motions and thus include
non-hydrostatic pressure effects. With recent improvements in the treatment of linear dispersion
and non-linear characteristics [1–4], numerical models based on the Boussinesq-type equations are
becoming widely used to provide an accurate description of coastal hydrodynamics. Boussinesq-
type equations have been successfully solved by the finite difference method (FDM) [5–7], finite
element method (FEM) [8–10], and finite volume method (FVM) [11–13].

In order to model the interaction of waves, currents and maritime structures using a Boussinesq-
type equation solver, it is necessary to generate a suitable boundary conforming grid. This is of
great importance in simulations where the near body hydrodynamics have to be correctly calculated
in order to compute loadings. Of the various mesh generation techniques available, the Cartesian
cut-cell approach pioneered by Causon and co-workers [14, 15] is particularly attractive in that
it is easy to implement and gives an accurate representation of very complicated boundaries,
while leaving the rest of the grid composed of cells whose faces are aligned parallel to Cartesian
coordinate axes. The solid bodies are extracted from the underlying Cartesian grid with the solid–
fluid boundaries approximated as piecewise linear segments. This method has been successfully
applied in many fields including the Euler equations in 2D [16, 17] and 3D [18, 19], the shallow
water equations [20, 21] and extended to deal with low-speed incompressible flows [22, 23] and
flows involving moving material interfaces [24, 25].

This paper describes a Godunov-type finite-volume Cartesian cut-cell numerical scheme for
solving the enhanced Boussinesq equations derived by Madsen and Sørensen [1]. The two-step
MSCL-Hancock predictor–corrector method is used to achieve overall second-order accuracy. The
model is used to simulate solitary wave reflection from a vertical wall and the diffraction of a
solitary wave by a truncated barrier. Further simulations are presented for the interaction of a
solitary wave with a surface-piercing cylinder. The results demonstrate that the present scheme
is capable of solving Boussinesq-type equations for waves interacting with cylindrical maritime
structures. The approach is easy to extend to coastal situations involving complicated boundaries.

2. GOVERNING EQUATIONS

The Boussinesq equations in terms of the depth-averaged velocity with improved dispersive char-
acteristics derived by Madsen and Sørensen [1] may be expressed in differential conservative form
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using vector notation as

qt +fx +gy =s (1)

where subscripts x , y and t denote differentiation with respect to space and time, and q, f, g and s
are vectors representing conserved variables, fluxes in the x- and y-directions, and source terms.
Neglecting viscous fluxes and bed friction, the vectors are

q =
⎡
⎢⎣

�

P

Q

⎤
⎥⎦=

⎡
⎢⎣

�

ud

vd

⎤
⎥⎦ , f=

⎡
⎢⎢⎣

ud

u2d+g(�2+2�h)/2

uvd

⎤
⎥⎥⎦

g =

⎡
⎢⎢⎣

vd

uvd

v2d+g(�2+2�h)/2

⎤
⎥⎥⎦ , s=

⎡
⎢⎢⎣

0

g�hx +�x

g�hy+�y

⎤
⎥⎥⎦

(2)

Here, � is the surface elevation above the still water level, h is still water depth, d is total water
depth (d=h+ �), u and v are the Cartesian depth-averaged velocity components, and �x and �y
are the Boussinesq dispersive terms defined by

�x = (B+ 1
3 )h

2(Pxxt +Qxyt )+Bgh3(�xxx +�xyy)

+hhx (
1
3 Pxt + 1

6Qyt +2Bgh�xx +Bgh�yy)+hhy(
1
6Qxt +Bgh�xy) (3)

�y = (B+ 1
3 )h

2(Qyyt +Pxyt )+Bgh3(�yyy+�xxy)

+hhy(
1
3Qyt + 1

6 Pxt +2Bgh�yy+Bgh�xx )+hhx (
1
6 Pyt +Bgh�xy) (4)

where B is a dispersion coefficient and g is the acceleration due to gravity. Following Madsen and
Sørensen [1], B is set to 1

15 which best represents shallow water linear dispersion.
On the fixed body in the present model, the fully reflective slip boundary conditions are imposed

and given by

�G=�I, ûG=− ûI, v̂G= v̂I (5)

where the subscripts G and I represent ghost and inner boundary cells, respectively; û and v̂ denote
the velocity normal and tangential to the solid boundary. The reflective slip boundary conditions
also translate into zero tangential velocity gradient and normal velocity component at a boundary
point under consideration.

3. CARTESIAN CUT-CELL TECHNIQUE

In order to simulate flows around obstacles or within complicated domains, the grid should be
boundary fitting. Simple approaches like the staircase fit obtained by employing a Cartesian grid
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Figure 1. Intersection points between line segment and cell interfaces.

with boundaries approximated by straight-line segments aligned with the co-ordinate directions
lead to spurious flow reflections and vorticity generation in the vicinity of the staircase—exactly
where it is important to obtain an accurate flow field for force calculations. A large body of work
has been undertaken into overcoming this problem through irregular star, curvilinear, unstructured
triangular, and Cartesian cut-cell body-fitted grids [26–32]. Of these approaches, the Cartesian cut-
cell technique is particularly attractive as it is straightforward and automatic to implement, permits
the overall Cartesian mesh to retain its simple connectivity, and avoids the need to evaluate Jacobin
metrics that introduce errors into curvilinear grid solutions, particularly for highly skewed cells.
The generation of a Cartesian cut-cell grid essentially involves identifying internal, external, and
boundary cells in a Cartesian grid (which may itself be uniform, nested, quadtree, etc.) and treating
the boundary cells separately as multi-sided flow cells with one or more sides forming the boundary.
Causon et al. [14, 15] provide a detailed description of the Cartesian cut-cell methodology.

In the present work, the cut cells are generated as follows. A background uniform Cartesian
grid is created that covers the entire flow domain. Internal solid boundaries are identified using
seeding points, which are ordered anticlockwise to form closed loops. Figure 1 shows an example
of such a loop of internal boundary seeding points (the solid black dots) created about a circle.
The grid cells containing seeding points are located by searching all the cells in the background
grid.

An intersection between the line segment connecting two boundary seeding points and a cell
interface occurs if two neighbouring seeding points are located in different cells. Consider the
internal boundary seeding points in Figure 1, represented by solid black dots (a,b,c, . . . ,k). The
coordinates of the intersections where the body surface crosses the underlying grid are determined
by linear interpolation and denoted by white circles in Figure 1. After all the intersections have
been identified, they are joined to form cut cells, whose indices are flagged. Herein a cut cell
refers to the polygon formed by the fluid part of the original cell and the cut edge (line segment
connecting two intersections). Each cut-cell polygon can have from three to five faces and can be
categorized into four types according to the angle (�) formed by the cut edge and the x-axis. The
cut-cell categories are �∈[0◦,90◦),�∈[90◦,180◦),�∈[180◦,270◦), and �∈(270◦,360◦). Each
cut-cell category may be further classified into four sub-types. For example, Figure 2 illustrates
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Figure 2. Grid generation: sub-type of cut cell for case with �∈[0◦,90◦).

the four sub-types obtained for cut cells where �∈[0◦,90◦). The sub-types for other cases can be
obtained by rotation.

After all the cut cells have been produced, each cell in the grid is flagged, according to whether
it is a fluid cell, cut cell, or a solid cell.

4. NUMERICAL MODEL

4.1. High-resolution FVM

By splitting the surface gradient terms using the balancing method of Rogers et al. [33] and
transferring the temporal terms to the left-hand side of Equation (1), a deviatoric form of Madsen
and Sørensen’s [1] enhanced Boussinesq equation may be expressed in integral form within a
cell-centred finite volume scheme as

�
�t

∫
�
q∗ d�+

∫
�

(
�f
�x

+ �g
�y

)
d�=

∫
�
s∗ d� (6)

where the numerical domain is denoted by � and the vectors q∗ and s∗ are expressed as

q∗ =
⎡
⎢⎣

�

P∗

Q∗

⎤
⎥⎦=

⎡
⎢⎢⎣

�

P−(B+ 1
3 )h

2(Pxx +Qxy)−hhx (
1
3 Px + 1

6Qy)− 1
6hhyQx

Q−(B+ 1
3 )h

2(Qyy+Pxy)−hhy(
1
3Qy+ 1

6 Px )− 1
6hhx Py

⎤
⎥⎥⎦ (7)

and

s∗ =

⎡
⎢⎢⎢⎣

0

g�hx +Bgh3(�xxx +�xyy)+Bgh2hx (2�xx +�yy)+Bgh2hy�xy

g�hy+Bgh3(�yyy+�xxy)+Bgh2hy(2�yy+�xx )+Bgh2hx�xy

⎤
⎥⎥⎥⎦ (8)

Applying Green’s theorem to the second term of Equation (6) gives

�
�t

∫
�
q∗ d�+

∮
S
f̂dS=

∫
�
s∗ d� (9)
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where S is the interaction path of � and f̂ is the vector of the combined flux functions given by

f̂= fnx +gny (10)

with nx and ny being the x and y components of the outward pointing unit normal vector (n) to S.
Equation (6) is solved using a Godunov-type finite volume scheme with appropriate modifications
for Cartesian cut-cell meshes. To maintain second-order accuracy, the two-step MUSCL-Hancock
method [34] is employed. During the predictor half-time step �t/2, a non-conservative approach
is taken whereby the intermediate cell centre value is evaluated from

(Aq∗)n+1/2
i, j =(Aq∗)ni, j −

�t

2

(
m∑

k=1
f̂nk ·lk−(As∗)ni, j

)
(11)

where A is the area of cell (i, j), superscript n denotes the time level, the vector lk is the length
of side k multiplied by n, and m is the maximum number of cell sides. For a flow cell, m=4
and for a cut cell ranges from 3 to 5. f̂nk is the flux vector through cell side k, evaluated from the
flow variables at time level n. The calculation of the interface fluxes is performed within each cell
using interpolated values at the central extremities of the inner interfaces. During the corrector
step, the interface fluxes are calculated over the full-time step and the intermediate solution from
the predictor step is used to solve a series of Riemann problems using the HLLC [35] approximate
Riemann solver. The cell interface fluxes obtained from these Riemann problems are used to update
the flow solution over the time interval �t from

(Aq∗)n+1
i, j =(Aq∗)ni, j −�t

(
m∑

k=1
f̂n+1/2
k ·lk−(As∗)n+1/2

i, j

)
(12)

where f̂n+1/2
k is the flux vector through cell side k evaluated based on the flow variables resulting

from the predictor step.
After obtaining the vector of intermediate variables q∗, the linear system of equations formed

by Equation (7) needs to be solved for the vector of conserved variables q, which are discretized
by central differences on a uniform, collocated grid. For example, the central difference expression
for P is

P∗
i, j = Pi, j−

(
B+1

3

)
h2

(
Pi+1, j −2Pi, j +Pi−1, j

�x2
+Qi+1, j+1−Qi−1, j+1−Qi+1, j−1+Qi−1, j−1

4�x�y

)

−h
hi+1, j −hi−1, j

2�x

(
1

3

Pi+1, j −Pi−1, j

2�x
+ 1

6

Qi, j+1−Qi, j−1

2�y

)

− h

6

hi, j+1−hi, j−1

2�y

Qi+1, j −Qi−1, j

2�x
(13)

in which �x and �y are the grid cell dimensions and the subscripts i and j are the Cartesian cell
indices. The discretized form of Equation (7) is a linear system,

Ux=b (14)
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in which U is a sparse and symmetric matrix whose coefficients are time independent and can be
pre-computed for a fixed grid. The vectors x and b are

x=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1,1

Q1,1

P2,1

...

Pn,n

Qn,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and b=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P∗
1,1

Q∗
1,1

P∗
2,1

...

P∗
n,n

Q∗
n,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

The linear system is positive definite and symmetric; hence, the unknown vector x is solved using
the conjugate gradient method.

4.2. Stability criterion

The stability of the present scheme is constrained by the Courant–Friedrichs–Lewy (CFL) criterion,
such that the time step employed is

�t=Cmin(�tx ,�ty) (16)

where

�tx =min
i

�xi
|ui |+√

ghi
(17)

with an analogous definition for�ty . The Courant numberC was taken to be 0.65 in our calculations,
which is close to the stability bound. Subscript i is the cell index, and �xi is the cell size in the
x direction.

4.3. Treatment of cut cells

The numerical solver is constructed on a Cartesian fluid cell template. Near the solid boundary,
cut cells contain both fluid and solid faces and a single cell interface may have both fluid and solid
parts. To implement the boundary conditions properly, each cut cell is first classified according to
its size. A large cut cell is defined as having an area larger than or equal to half that of the host
grid cell from which it is cut. When the area of a cut cell is smaller than half its host cell, such a
cell is defined as being small.

When evaluating interface fluxes for a large cut cell, the flow data at the cell face are approximated
using the following reconstruction procedure:

u(x, y)=ui, j +r ·∇umod
i, j (18)

where r is the normal distance vector from the cell centre to a specific point (x, y) on a cell
interface which is defined to be positive in the east and north directions, ∇umod

i, j is the limited
gradient vector modified for calculating fluxes across the flow boundaries of any given large cut
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(i, j+1) (i+1, j+1)

(i-1, j) (i, j)

(i+1, j)

(i-1, j-1)

(i, j-1)
A B 

C D 

E 

F 
O 

R 

(i-1, j+1)

Figure 3. Calculation of cut-cell fluid and solid gradients.

cell. Following Yang et al. [17] and Causon et al. [14] and taking the x-direction gradient vector
of cell (i, j) in Figure 3 as an example, the fluid and solid gradients can be expressed by

∇umodf
i, j =�(l)

ui, j −ui−1, j

�xi−1/2, j
and ∇umods

i, j =�(l)
ui, j −ui−1, j

�xi−1/2, j
(19)

in which �(l) is a slope limiter, and �xi−1/2, j = xi, j −xi−1, j . The slope limiter is evaluated
from [31]

�(l)=max[0,min(�l,1),min(l,�)] (20)

in which l is the ratio of successive gradients and � is the limiter parameter (1���2) (see e.g.
Toro [35]). In the present work, the min–mod limiter �=1 is used because of its superiority in
terms of numerical stability. For fluid gradients, the ratio of successive gradients is given by

l= (qi+1, j −qi, j )/�xi+1/2, j

(qi, j −qi−1, j )/�xi−1/2, j
(21)

where q represents one of the principal flow variables, �, (P) and (Q), and �xi+1/2, j = xi+1, j −xi, j .
For solid gradients, the ratio is defined as

l= (qR−qi, j )/�xi,R
(qi, j −qi−1, j )/�xi−1/2, j

(22)

in which �xi,R = xR−xi, j . Flow information for the fictional cell R is obtained using linear
interpolation based on values at cell (i, j) and at the boundary point O . If cell face DA separates
both fluid and solid parts, the calculation is similar, with vector (ui, j −uR)/�xi,R taking the place
of the corresponding term in Equation (19) when evaluating solid gradients, and �xi,R = xi, j −xR .
The x-direction limited gradient vector for the large cut cell (i, j) is given by

∇umod
i, j = ∇ ys∇umods

i, j +∇ yf∇umodf
i, j

∇ y
(23)
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where ∇ ys=|BF |, ∇ yf=|FC |, ∇ y=|BC |. Now ∇ y=∇ ys+∇ yf, so Equation (23) includes the
cases with ∇ ys=0 or ∇ yf=0, in which the modified limited gradient vector ∇umod

i, j simply reduces
to either the fluid or solid gradient term. The above formula can be extended to the y-direction
in a similar manner. Once all the face values of the conservative flow variables are obtained, the
interface fluxes through cell faces AE, FC, CD and DA are evaluated using the corresponding
formulations for the predictor and corrector steps.

The fluxes through the cut edge (EF in Figure 3) must also be properly evaluated in order
to maintain the conservation properties of the numerical scheme. However, the normal velocity
component on the cut edge EF is zero for slip (reflective) boundary conditions. Therefore, there
is no convective flux through the cut edge. The only component of the inviscid fluxes through the
cut edge is g(�+2�hs)/2.

Using Cartesian cut cells to approximate curved boundaries, very small cut cells are often
generated. In an explicit numerical scheme, these small cells lead to the requirement of a very small
time step to avoid numerical instability. A conventional means of overcoming this computationally
inefficient requirement is to merge the small cells with a neighbouring larger cell. However, the
increased cell sizes near the boundary may reduce the solution accuracy. Hence, we use the ghost-
cell immersed boundary method (GCIBM) proposed by Tseng and Ferziger [36] to treat the small
cut cells. The flow information at the small cut cells is interpolated from the boundary conditions
and neighbouring cells as explained by Liang et al. [20].

In the present study, it should be stressed that the Boussinesq terms in Equations (3) and (4) are
simply omitted from the cut cells, so that locally the equations reduce to the non-linear shallow
water equations. Careful testing shows that this does not appear to affect the results, as the short
wave dispersive Boussinesq effects are negligible in the very small region containing cut cells
at the fluid domain boundary. Thus, the complex mixed spatial and temporal derivatives in the
Boussinesq terms are accurately treated as source terms within the solver over the bulk of the
domain, where the grid geometry is simple Cartesian, and a simple test is used to turn off these
terms for the cut cells.

5. RESULTS

Three test cases are considered: solitary wave reflection from a solid wall; diffraction from a
truncated thin wall; and a wave scattering and diffraction from a vertical surface-piercing circular
cylinder in a wave tank. In each case, second-order solitary wave elevation and flux components
in the x- and y-directions are provided at the input boundary. The results presented here satisfy
previous grid convergence tests.

5.1. Solitary wave reflection from a vertical wall

The first validation test concerns solitary wave reflection from a vertical wall in a horizontal-
bottomed straight flume with still water depth of 1m, for which second-order analytical solutions
and experimental measurements are available. The computational domain is 20m long by 0.04m
wide, and discretized spatially with 1000×2 cells. In one grid configuration, a 0.03m thick wall
occupying 11

2 cells is situated at the right-hand end of the domain (Figure 4(a)). Simulations are
carried out for solitary waves of varying wave height H initially introduced 10m from the wall,
and the computations terminated before the reflected wave from the wall reaches the left boundary.
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(a) (b)

normal cell cut cell solid cell

Figure 4. Grid cells near the vertical wall: (a) cut cells and (b) total reflection.
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Figure 5. Maximum run up at vertical wall for varying H .

For comparison purposes, similar computations have been carried out with a second grid configura-
tion whereby right-hand wall is replaced by a fully reflective boundary without cut cells as depicted
in Figure 4(b). Figure 5 shows the agreement obtained between the predicted maximum run up at the
wall (obtained with and without cut cells) and the second-order analytical solution of Byatt-Smith
[37] derived from the non-linear superposition of two waves moving in opposite directions, as

�max

h
=2

H

h
+ 1

2

(
H

h

)2

(24)

Figure 6 shows the time t0, at which maximum run up occurs as a function of increasing wave
height H . As expected, the taller solitary waves move faster. Figure 7 shows the computed solitary
wave profiles along the flume at different times t= t0, t0±0.8, t0±1.6, and t0±2.4s for waves
of non-dimensional heights H/h=0.1 and 0.6, respectively. The reflected wave profiles barely
alter after reflection regardless of whether the incoming solitary wave has small (a) or large (b)
amplitude. This test confirms that the cut cells have been implemented properly for normally
incident wave reflection and that the scheme is accurate at phase-resolution.

5.2. Diffraction of a solitary wave by a truncated wall

The second validation test examines the diffraction of a solitary wave by a thin surface-piercing
vertical wall that extends about two-thirds the way across a wave tank. Figure 8 provides a plan
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Figure 6. Occurrence time of maximum run up for varying H .
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Figure 7. Solitary wave profiles along the flume at different times.

view of the portion of the flume near the wall, corresponding to the layout of the flume used by
Perroud [38], who obtained experimental measurements of the incident and diffracted wave field
due to solitary wave interaction with the barrier. The solid wall is 0.008m wide, the gap between
the truncated end of the wall at A and the flume side wall W2 is 0.508m. The still water depth is
0.061m. Perroud [38] carried out a parameter study by varying the ratio of the incident solitary
wave height to water depth H/h. Water elevation measurements were made using wave gauges at
locations, expressed (later) in polar coordinates (r,�) from the origin O at the trailing corner of
the truncated wall indicated in Figure 8. The computational domain is 1.6m long×1.6m wide and
discretised with a uniform grid of 400×400 cells. The initial crest position of the solitary wave is
0.48m upwave from the truncated barrier. The Cartesian coordinates of two corners of the barrier
are A (0.68m, 0.508m) and O (0.688m, 0.508m) where the origin is at the south-west corner of
the tank.
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Figure 8. Definition sketch of truncated wall in flume.
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Figure 9. Predicted and measured [38] diffraction coefficients for different
H/h: (a) H/h=0.27 and (b) H/h=0.42.

Figure 9 shows the agreement between the predicted and measured diffraction coefficients for
two solitary waves with wave height to depth ratios of 0.27 and 0.42, respectively. The ratio of the
diffracted wave height to the incident wave height (�max/H) is plotted against radial distance r for
different �. In the lee of the wall, the maximum wave elevation varies with distance from the tip of
the truncated wall as follows. Close to the tip of the truncated wall at r ∼1cm, the non-dimensional
maximum wave elevation reduces to a value between 0.4 and 0.5. Along the �=0 line which
is immediately behind the wall, the non-dimensional wave elevation reduces asymptotically to a
value of about 0.2 as wave energy leaks into the shadow region behind the wall. Along the �=�/2
line, the non-dimensional maximum wave elevation recovers to a value between 0.6 and 0.7 at
r ∼14cm, then decreases asymptotically towards about 0.6.

Figure 10 presents the predicted wave elevation time histories along the �=�/2 line at
B,O,C,E,F and M at r =−0.4,0,0.4,29.6,30 and 30.4 cm, respectively, for H/h=0.42. The
wave elevation time histories vary with spatial distance in the region near the tip of the truncated
wall change even though the spacing between B,O and C is �x (Figure 10(a)). Far from the
truncated wall, the time histories are almost identical (Figure 10(b)).

Figure 11 depicts the non-dimensional maximum run up profile along the front face of the
truncated wall (from the tip A to the lateral sidewall W1). Diffraction effects are most evident
within 30 cm of the tip A. Near W1, the maximum run up (and hence reflection coefficient) becomes

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1459–1483
DOI: 10.1002/fld



BOUSSINESQ CUT-CELL MODEL FOR NON-LINEAR WAVE INTERACTION 1471

Figure 10. Wave elevation time histories at different locations along the �=�/2 line for H/h=0.42:
(a) near wall: B,O,C and (b) far from wall: E,F,M .

Figure 11. Variation of wave crest with different distance from point a on the front wall.

almost constant at about 2.16 and 2.2 which are almost identical to the Byatt-Smith analytical
results from Equation (24) of �/H =2.21 for H/h=0.42 and 2.14 for H/h=0.27, respectively.

Figure 12 illustrates the diffraction process after the incident solitary wave interacts with the
truncated wall by means of a time sequence of 3-D plots of the surface elevation and the corre-
sponding contours, when H/h=0.42. The solitary wave reaches the truncated wall at t∼0.32s
(Figure 12(a)). Water then rises up the front face of the wall, and the wave begins to reflect.
Diffraction effects commence from the tip of the wall. At t∼0.57s, the maximum run up has
occurred at the front face of the wall. Meanwhile, diffracted waves start to enter the otherwise
still water in the lee of the truncated wall (Figure 12(b)). By t=0.77s, the solitary wave has
split into a forward diffracted wave and a back-scattered reflected wave (Figure 12(c)). Secondary
back-scattered and forward-scattered waves begin to emanate outward from the tip of the wall and
respectively follow the leading reflected and diffracted waves. A vortex develops at the tip of the
wall. Figure 12(d) shows the situation at t=1.02s.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1459–1483
DOI: 10.1002/fld



1472 D. Z. NING ET AL.

5.3. Solitary wave diffraction from a vertical surface-piercing circular cylinder

In order to test the ability of the present numerical model to resolve solitary wave interaction with
a typical configuration for an offshore wind turbine foundation, we consider the scattering and
diffraction of a solitary wave after it meets a vertical surface-piercing circular cylinder. The case

Figure 12. Wave diffraction at a truncated wall: 3-D view of wave profiles and free surface contours at
different times: (a) t=0.32s; (b) t=0.57s; (c) t=0.77s; and (d) t=1.02s.
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Figure 12. Continued.

θ
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Figure 13. Definition sketch: solitary wave interaction with a circular cylinder.

is identical to that studied experimentally by Yates and Wang [39] in a horizontal-bottomed wave
tank 7.6m long and 0.76m wide in which the still water depth is h=4cm. A vertical cylinder of
radius R=6.35cm is located on the longitudinal centreline of the channel. The incoming solitary
wave is of height 1.6 cm such that �incident/h=0.4. The computational domain is of length 3m
and width 0.76m and is discretized by a 750×190 Cartesian grid. The central axis of the cylinder
is located at O (2.0m, 0.38m), where the coordinates have their origin at the south-west corner
of the tank. The initial maximum solitary wave profile is generated at 1.0m from the western
boundary of the domain (Figure 13).

Figure 14 shows the cut cell and equivalent staircase Cartesian grids that are generated in the
vicinity of the circular cylinder. It is obvious that the cut-cell grid provides a much smoother
boundary representation than the staircase.

Figures 15–18 compare the predicted and measured time histories of the dimensionless surface
elevation at four gauges along the radial lines �=0,60,120 and 180◦ (where � is measured
clockwise from the x-axis through the centre of the cylinder, such that the �=0 and 180◦ lines
are taken westward and eastward along the longitudinal centreline of the tank, as indicated in
Figure 13). Alternative numerical results obtained by Yates and Wang [39] using an FEM solver
are also plotted. In the figures, the time axis of the numerical predictions has been shifted so that
the peak wave amplitudes coincide with the experimental data. In general, the present numerical
predictions agree well with the measured and alternative numerical data. Both numerical models
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(a) (b)

Figure 14. Cartesian grids surrounding the circular cylinder with two methods: (a) present
(cut cell) and (b) traditional (staircase).

Figure 15. Time history of free surface elevation along �=0◦.

overestimate the maximum run up very close to the cylinder (at r/R=1.03 in Figures 15(d),
17(d) and 18(d), where r is the radial distance from the centre of the cylinder) mainly due to
the omission of viscosity and surface tension in the simulation. The non-dimensional free surface
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Figure 16. Time history of free surface elevation along �=60◦.

elevation time histories in Figures 15(a), 16(a), (b), 17(a) and (b) have secondary peaks due to
the scattered waves. Along the radial line �=0◦, the peak wave surface elevation increases in
magnitude towards the cylinder (Figure 15).

Overall the comparisons between the numerical simulations and the experimental data down-
stream of the cylinder are good. At r/R=1.35 (i.e. 2 cm downstream), there is no sign of viscous
wake effects. As before, at r/R=1.03, the predicted peak free surface elevations are higher than
measured. Figure 19 shows the free surface profiles along the centreline of the wave tank at different
times. This depicts the solitary wave approaching, interacting with and passing the cylinder. Peak
run up occurs at t=1.28s.

To visualize the scattering process, Figure 20 contains 3-D views of the water surface and free
surface elevation contours at t=0.08,1.28 and 1.68 s, which correspond to the early propagation
of the solitary wave before it reaches the cylinder, the solitary wave interacting with the cylinder
at the instant of maximum run up, and the scattered and diffracted field after the solitary wave has
passed the cylinder.

By subtraction of the incident solitary wave from the complete diffraction solution, details of
the scattered wave are obtained (Figure 21). The scattered wave structure is relatively simple early
in the interaction, with the water surface raised on the upstream side of the cylinder and weakly
depressed behind. After the reflected scattered wave moves upstream away from the cylinder, the
water surface drops significantly at the front of the cylinder as well as in its lee. At t∼1.80s,

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1459–1483
DOI: 10.1002/fld



1476 D. Z. NING ET AL.

Figure 17. Time history of free surface elevation along �=100◦.

a characteristic three peaked ring wave can be seen moving outwards: one of the peaks travels
along the centreline and the others are orientated at about ±45◦ to the downstream direction. This
three-peaked ring structure is very similar to that observed by Buldakov et al. [40, 41] in their
work on the diffraction of compact wave groups by a cylinder. Buldakov et al. report that the
structure is due to the second-order sum contribution to the scattered field. The complicated spatial
distribution of the peaks in Figure 21 is related to the propagation and collision of short wave
disturbances around the body surface. It is encouraging and perhaps surprising that the present
Boussinesq-type model can reveal such detailed local structure.

Figure 22 compares the wave elevations for the cut-cell and staircase Cartesian grid methods
at r/R=2.92 and 1.36. As would be expected, the difference between the two sets of results is
large close to the cylinder especially at the peak time, but decays away from the cylinder. The
cut-cell technique is much better than the staircase grid in locally resolving wave interactions with
complicated structural elements.

These results demonstrate that the present cut-cell Boussinesq model is able to simulate strongly
non-linear waves interacting with cylindrical structures. Further computations have been carried
out to study the effects of water depth h and wave height H on wave run up. Here, the centre of
the cylinder is taken as the origin of the coordinates and the rectangular computational domain
is defined as (−15R�x�15R)×(−7R�y�7R). Figure 23 shows the maximum non-dimensional
wave elevations occurring at any time along the centreline and around the surface of the cylinder
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Figure 18. Time history of free surface elevation along �=180◦.
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Figure 19. Wave profile along the centreline at different times.
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Figure 20. 3-D view of wave profile and the corresponding contours at different times:
(a) t=0.08s; (b) t=1.28s; and (c) t=1.68s.

for undisturbed water depth h/R=1.0 and 2.0 with different wave heights (H/h=0.1,0.2,0.4).
For steeper non-linear solitary waves, the maximum surface elevation always occurs at the front
stagnation point. The lowest maximum elevation occurs slightly to the rear of the shoulder of the
cylinder, close to the point when the maximum Bernoulli suction occurs, and this point moves
farther round the cylinder towards the rear stagnation point as the degree of non-linearity is
increased.

Figure 24 shows the maximum non-dimensional wave elevations along the centreline for
non-dimensional wave heights H/h=0.1 and 0.2 for different ratios of still water depth to
cylinder radius (h/R=1.0,2.0,3.0), respectively. The crest and trough of a bow-like wave occur
close to the front and rear of the cylinder, whose magnitude increases as the relative depth
shallows.
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Figure 21. Contours of surface elevation for solitary wave scattered field at various times: (a) t=1.12s;
(b) t=1.24s; (c) t=1.32s; (d) t=1.40s; (e) t=1.60s; and (f) t=1.80s.

Figure 25 depicts the time histories of wave elevations at x/R=−2,−1,0 and 1 for h/R=1 and
H/h=0.4 and at x/R=−4,−1,0,1 for h/R=3 and H/h=0.2. We can see that the maximum
surface elevation always occurs at the front of the cylinder, where x/R=−1.

6. CONCLUSIONS

The Boussinesq-type equations derived by Madsen and Sørensen are solved on a Cartesian cut-cell
grid using a second-order MUSCL-Hancock Godunov-type finite volume scheme. This numerical
model is validated for solitary wave reflection from a vertical wall and for solitary wave reflection
and diffraction by a truncated barrier. The model has then been used to simulate solitary wave
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Figure 22. Wave elevation time histories for cut cell and staircase grids: �=100◦.

Figure 23. The maximum wave run up along the centreline.

-10 -5 0 5 10

x/R

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

η
m

ax
/H

H/h=0.1
h/R=1.0
h/R=2.0
h/R=3.0

-10 -5 0 5 10

x/R

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

η
m

ax
/H

H/h=0.2
h/R=1.0
h/R=2.0
h/R=3.0

(b)(a)

Figure 24. The maximum wave run up along the centreline.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1459–1483
DOI: 10.1002/fld



BOUSSINESQ CUT-CELL MODEL FOR NON-LINEAR WAVE INTERACTION 1481

0 1 2 3 4 5 6 7 8 9 10
t (s)

-0.4

0

0.4

0.8

1.2

1.6
η

m
ax

/H

h/R=1.0, H/h=0.4
x/R=-2
x/R=-1
x/R=0
x/R=1

0 2 4 6 8 10
t (s)

-0.4

0

0.4

0.8

1.2

1.6

η
m

ax
/H

h/R=3.0, H/h=0.2
x/R=-4.0
x/R=-1.0
x/R=0
x/R=1.0

(a) (b)

Figure 25. Time histories of maximum free surface elevation at different locations.

interaction with a vertical surface-piercing circular cylinder. The predicted free surface motions
and run up at the cylinder are very similar to published results obtained experimentally and from
an alternative numerical scheme. The incoming solitary wave impacts against the cylinder causing
maximum run up at the front stagnation point, followed by reflected back-scattered waves that
travel against the direction of the solitary wave and secondary diffracted waves that propagate
behind the cylinder. The scattered wave structure forms a three-ring series of circular waves, which
are thought to be due to second-order sum wave components. The cut-cell Boussinesq model
is applicable to the phase-resolved simulation of waves and currents interacting with maritime
structures with arbitrarily complicated geometry situated in shallow coastal waters where the waves
are non-breaking.
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